November 1965 M-TT-65-7

JUNCTURE STRESS FIELDS
IN MULTICELLULAR SHELL STRUCTURES

Final Report

Nine Volumes

Vol. VI Analysis of Multicellular Propellant
Pressure Vessels by the Stiffness Method

by

C. T. Chen
P. Stern

Contract NAS 8-11480 to National Aeronautics and Space Administration
George C. Marshall Space Flight Center, Huntsville, Alabama



FOREWORD

This report is the result of a study on the numerical analysis of stresses and

deformations of multicellular propellant pressure vessels by the stiffness

method. Work on this study was performed by staff members of Lockheed Missiles
and Space Company in cooperation with the George C. Marshall Space Flight
Center of the National Aeronautics and Space Administration under Contract

NAS 8-11480. Contract technical representative was H. Coldwater.

This volume is the sixth of a nine-volume final report of studies
the department of Solid Mechanics, Aerospace Sciences Laboratory,
Missiles & Space Company. Project Manager was K. J. Forsberg; E.

was Technical Director for the work.

The nine volumes of the final report have the following titles:

Vol. I Numerical Methods of Solving Large Matrices

Vol. IT Stresses and Deformations of Fixed-Edge Segmental
Shells

Vol. ITII  Stresses and Defcormations of Fixed-Edge Segmental

Vol. IV Stresses and Deformations of Fixed-Edge Segmental
Shells
Vol. V Influence Coefficients of Segmental Shells

conducted by
Lockheed
Y. W. Tsuil

Cylindrical

Conical Shells
Spherical

Vol. VI Analysis of Multicellular Propellant Pressure Vessels by the

Stiffness Method

Vol. VII Buckling Analysis of Segmental Orthotropic Cylinders under

Uniform Stress Distribution

Vol. VIITI Buckling Analysis of Segmental Orthotropic Cylinders under

Non-uniform Stress Distribution

Vol. IX Summary of Results and Recommendations
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SUMMARY \&>§4'1
This volume presents a technique to set up and solve the boundary-value
problem of structures composed of shell elements. The problem is formulated
from the standpoint of transformations of coordinate systems, the compati-
bility and equilibrium requirements at the Jjunctures and the solution of a
large set of algebraic equations. The technique, known as the direct matrix
stiffness or displacement method is introduced to the multicellular shell
structure to predict the stresses and deformations due to applied loads and
thermal gradients. It is shown that the coupling and ordering of equations
plays an important role in forming a desirable overall banded matrix. An
example which demonstrates the practicability of the method is given. A
digital program designed for the juncture matching has been developed.
Although this program is not sophisticated, it can be used for a complete

juncture problem. .
J ) Pﬁ})\ A’{(
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flexural rigidity of shell = Eﬁ3/12(l - v2)

modulus of elasticity
nondimensionalized force vector
boundary force at station i

boundary forces of fixed-edge shell due to applied forces
or thermal gradients

shear modulus

thickness of shell

dummy subscripts

stiffness matrix

stiffness influence céefficients

moments and stress resultants

transverse shears

displacement components

orthogonal coordinates along boundaries of a shell
nondimensionalized displacement vector

boundary deformations (displacements or rotations) at Station 1

~

dimensionalizing matrix for forces F = AF
dimensionalizing matrix for displacements § = ud
Poisson's ratio

transformation matrix of coordinates

dimensional guantity



Section 1
INTRODUCTION

As a result of an investigation of juncture stress fields peculiar to the
multicellular pressure vessels (Fig. 1), a theory for the prediction of the
membrane and bending stresses and the corresponding deformations for such

shell structures was formulated.*

SYMMETRICAL
ABOUT
CENTERLINE

+

4 -CELL STRUCTURE 20-CELL STRUCTURE

Fig. 1 Multicellular Shell Structure

* "Investigation of Juncture Stress Fields in Multicellular Shell Structures,"”
by E. Y. W. Tsui, F. A. Brogan, J. M. Massard, P. Stern, and C. E. Stuhlman,
Technical Report M-03-63-1, Lockheed Missiles & Space Company, Sunnyvale,
Calif., Feb 1964 - NASA CR-61050.



Due to the fact that analytic solutions are still lacking, it was decided to
solve the problem numerically by means of a finite-difference technigque. %>
ensure the feasibility of such a mumerical solution, a direct method of solving

large matrices with a high-speed digital computer was also developed.

According to the previous work, if the stiffness or displacement method is used,
the total forces and hence the corresponding stresses along the juncture of the
shell segments (Fig. 2) may be expressed concisely in the following matrix “orm

F = ¥ +F (r.1)

wvhere k 1is the stiffness matrix, 6 are the deformations, and Ff are the
fixed-end forces due to applied loads or thermal gradients. 1In view of this
situation, it is logical to solve the problem systematically by the established
general procedure of analysis already described. This procedure may be stated

briefly as follows:

1. Determination of the fixed-end forces, Ff , along the boundary as
well as stresses and deformations in the interior of shell segments

due to loads

2. Determination of the influence coefficients, kij » along the boundaries
of shell segments, i.e., the induced forces at points 1 due to unit

deformations (6 = 1) at points j

3. Determination of the actual deformations, & , along the shell
boundaries; this requires the satisfaction of both compatibility

and equilibrium conditions at the junctures of the structure

Once all the work involved in these three steps is completed, the total stresses

and deformations in the specific discrete interior locations may be obtained.
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Fig. £ Basic Shell Elements of Multicellular Structure



This volume presents the work involved in Step 3 and includes a technigue

to set up an overall stiffness matrix for shell structures. This matrix is
based on the stiffness matrices of the individual shell elements and compati-
bility and equilibrium requirements along their juncture lines. The stiffness
matrix method is applied to 2 multicellular shell structure and a simple
numerical example is given to demonstrate the technique. Both overall relaxa-
tion and successive approximation methods of determining the actual deforma-

tions along the shell boundaries are given.




Section 2
STIFFNESS METHOD FOR SHELL STRUCTURES

2.1 General

Previous volumes contain information on the determination of fixed-edge forces
and stiffness influence coefficients of shell elements which form the
multicellular shell structure shown in Fig. 2. With this knowledge it is
possible to determine by the "stiffness" method the boundary deformations and
forces required to Jjoin the various elements together to form a continuous
structure. Stresses and displacements at any point in the structure are com-
pletely determined by the loading and boundary deformation of each element.
Therefore, the problem is to determine the deformation at the juncture of the
shell elements for the complete structure when it is subjected to a prescrited
loading. The stiffness method obtains its name from the fact that the juncture
problem is reduced to the solution of a set of simultaneous equations

ek = F (2.1)

in which the unknowns are the redundant juncture deformations 6R, the vector
F 1is composed of known fixed-edge forces and the matrix K is the “overall"
stiffness matrix. This set of equations is based on the element constitutive
equation

F = kb + F. (2.2)

by requiring compatibility of the deformations 6 and equilibrium of the

forces F Dbetween the shell elements along juncture lines. In principle the
problem is straighfforward; however, in carrying out the analysis, problems such
as the coordinate system, ordering of the equations, and the solution of a large

system of simultaneous equations become evident.




2.2 Coordinate System

The constitutive boundary relations for the individual shell elements were
found by using the most convenient orthogonal coordinate system for the givan
geometry, thus appropriate shell coordinates were used for the local
coordinate system for the cylinder, cone, and sphere. All forces F and
deformations & were nondimensionalized in order to cover a wide range of
parameters. Therefore, as & first step in obtaining the overall stiffness
matrix it is necessary to dimensionalize the constitutive boundary equations

as noted in Vol. V or to nondimensionalize these guantities by the same

constants.

For a general structure it is sometimes useful to consider a rectangular global
coordinate system for all forces and deformations. A shell structure on the
other hand has a common tangent line ab as seen in Fig. 3 along which the
rotation wn and the displacement component u.n are parallel at the juncture
of two or more elements. For this case it is advantageous to use the local
coordinate system of element 1 or 2 for reference of direction for force and

deformation components. Along the juncture of the two elements shown in Fig. 3

Fig. 3 Juncture Line 6f Two Shell Elements




the local coordinate 1 is parallel for both elements. Thus to transform
the boundery coordinate of Element 2 to conform to the coordinate system of
'Element 1 involves a 180° rotation about the z. axis and a rotation by the

2
amount -y about the T axis. This rotation of coordinates is given by

M -1 0 0 M
= 0 -cos ¥ -sin ¥ C (2.3)
z) 0 -sin § cos ¢

2

In certain cases it can occur that the T coordinatesof Elementsl and 2 are

in the same direction as shown in Fig. 4. Then the transformation of the

Fig. 4 Orientation of Coordinates Along the Juncture
of Two Shell Elements

local coordinates of Element 2 to those of Element 1 is found by a rotation of

-¢¥ about the T axis and is given by

T 1 0 0 M
s = 0 cos ¥ sin ¥ C (2.4)
2}, 0 -sin ¢ cos zi5




Since the components of boundary forces and deformations are directed along

the boundary coordinates they can be transformed to different orientations by

the rotations defined by Egs. (2.3)or(2.4) Instead of using a number of different

rotation matrices, it is possible to use only one given by

—
1

cos ¥
-sin ¢

sin ¥

cos §

(2.5)

in conjunction with a diagonal matrix for changing signs of the main diagonal.

For instance, the direction of the forces F of Element 2 can be transformed

to those of Element 1 by

"
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(2.6)

where A 1is a diagonal matrix used to dimensionalize (see Vol. V) and change

signs if necessary. In a similar manner the deformations

by

N S

where u 1is a diagonal matrix used to dimensionalize and change signs.

can be transformed

(2.7)



With- the previous definitions the constitutive boundary relations for an
element can be written as

P o= erkp e g4 (2.8)

where it is understood that F , §, and ﬁf are in the transformed direction
and k is the element stiffness matrix in its untransformed and nondimension~
alized state. For future reference k corresponds to the transformed element
stiffness matrix and is defined by

¥ o= erkp T (2.9)

-1
where is the inverse of u and éT is the transpose of @& .
2.3 Compatibility and Equilibrium Along Juncture Line

At a shell juncture it is required that the displacement and rotation vector
be equal for each element being joined together. The transformation matrix ¢
in Eq. (2.5) provides a means by which the deformation of the various elements
can be rotated to the same direction. All that must be done to guarantee
compatibility is to equate the components of the deformation vector of the
elements. If “1}6 is the dimensional deformation of Element 1 along a Jjuncture
line and u226 is the deformation of Element 2 along the same juncture line,
then compatibility requires that

1 2 ‘
TR N (2.10)

Similar equations can be written for other elements having the same juncture

line.

Equilibrium along a Jjuncture line requires that the summation of forces be
zero. For m number of elements being joined together along a common juncture

line, equilibrium can be written as
m

)
F = 0 (2.11)
b

9



where the superscript refers to the element number and it is implied that the

forces are oriented in the same direction by use of the proper transformation

matrices.
2.k The Qverall Stiffness Matrix of a Shell Structure

The major problem in forming or even thinking about the overall stiffness matrix

is devoted to the notation and the ordering of the elements which form the

shell structure.

The scheme to obtain the overall stiffness matrix can best be explained by a

simple example. For this purpose the structure shown in Fig. 5 is divided into

four elements denoted by 1, 2, 3, and 4. Edges which are not junctures are
This simplifies the problem since the boundary condi-
It is assumed that the stiffness matrices

considered to be fixed.

tions are already taken into account.

P T

Fig. 5 ©Shell Structure

and fixed-edge forces have been developed for each of the shell elements and

that the forces and displacements have been transformed to a compatible

coordinate system. The next problem is to number the juncture points. The

10



arrangement shown in Fig. 5 is one possible ordering. The constitutive edge

relation for each element is written as
F., = k.6, 4+ 7F i=1lL 2......12 (2.l2)

where the superscript £ refers %o the element number and the subscript refers
to the juncture point. Since compatibility is already taken into account, all

that is necessary is to write the equilibrium equations

L

Ly,

i
£=1

|
o

i=1, 2, .....12 (2.13)

Substituting Eq. (.12)into Eq. (2.13)yields the system of equations
(lE.. + %K.+ % .+ hi..) 8. = -(lF? + 5t 4 3T, hF?) (2.14)
ij ij ij ij J i i i i
i=1, 2 ..... cesel?2
For the particular problem under consideration, these equations in expanded

form become

4 ~
N\ =

o o o
vioF ow o

L T

- A
MooMoOK oM KK
o

LI A T -
o

%8
9
10
11

MoK K OX MM X M
R S "I TR VR
MoOoM X OM X X X X X
I R T I VI VIV

L T - -

XXX %0 P12
N/ N S

where the x denotes a non zero term. Hence this is the desired set of

INNNN:":N

CaJR < - I T A

L I T I

CoIE T T T T -
o o0 o o

™

11



‘ similtaneous equations which in matrix form is
X6 = F

For this particular ordering it is seen that the K matrix is full. When a
large mumber of points are involved it is advantageous to order the X matrix

to take advantage of the zeros.

A "natural" ordering system is tc consider points 1, 2, 3 to comprise one line,
say line 1, and points 4, 5, 6 to comprise line 2, etc. Then with the notation

| that the superscript on the right implies the line mumber 61 signifies the
deformation of line 1.

With this notation the expanded matrix Eq. £.15)can be written in block form as

N - N
% 0 X X 61 fl
0 X b ¢ X 52 - -13;2 (2 16)
X X X 0 63 F
L -4
X X 0 X 6 F
L — \ / A

By reordering the equations, the following matrix equation can be obtained

—— —_ A /_\
X X x 0 61 Fl
3 —
X X ) X 5)+ - i‘- (2'17)
x 0 x x L} F
2 -2
0 X X X 8 P
— — K / L /

For this small problem the ordering is not important; however, for larger

systems the advantage is evident.



Section 3

APPLICATION OF THE STIFFNES: METHOD TO A MULTICELLULARlSTRUCTURE
3.1 General

The problem considered in this section is concerned with developing the overall
stiffness matrix of the multicellular shell structure shown in Fig. 1. This
structure is subjected to intermal pressure, body forces, and thermal gradients.
It is assumed that the loads are symmetric with respect to the diametrical
plane bisecting each pair of cells located opposite each other. Thus in a
structural apalysis only one-half of a cell need be considered. Each cell is
composed of four basic structural elements, namely, flat plate, cylindrical,
conical and spherical segments. [hese elements have beern investigated in
Volumes II through V for the analysis of intermediate loads and the effect of

boundary deformations in computing the element influence coefficients.

Techniques to determine the overall stiffness matrix of shell structures
discussed in Section 2 are applied to the analysis of a structural model of the
multicell. It is not the purpose in this section to present detailed equation
systems but is orientated to the epplication of special ordering methods and
techniques to arrange the stiffness matrix in a form by which the set of

simultaneous equations can be solved by methods discussed in Vol. 1.

In some cases it is expedient to have a method by which the structural behavior
can be obtained by simple means. From this standpoint a successive approxima-
tion technique is presented which by-passes the necessity of solving a very

large set of equations at one time. Its advantage lies in its inherent simplicity
and the fact that local behavior can be assessed during the analysis. The scheme
is based on line relaxation in which the elements with a common juncture along

one line are solved at one time.

13




3.2 Overall Stiffness Matrix

The structural model shown in Fig. 6 represents one way in which one-half of

a cell can be subdivided into basic elements. As shown in this figure there
are eleven elements Jjoined together along eighteen boundary lines. The
ordering of elements and lines shown is not unique. For this particular
numbering system the Jjuncture lines around Element 9 are even numbers, while
the transverse lines between elements such as the sphere and cone are odd
numbers. Lines 19 and 20 can be used to input known data such as displacements
or loads. If deformations are specified along these lines, this information

will become part of the right hand vector F .

Recause of symmetry all of the elements have three distinct boundary lines
except for Element 9 which forms a connection with all other elements. This
plate can be considered to have eight boundary lines which are even numbers.
The nomenclature used in this section corresponds to line ordering; thus,
superscripts are used on forces F , deformations & , and influence coeffi-
cients to denote the element and line number. Values on the upper left denote
the element mumber while the values on the upper right denote the line segment.
For the deformation a number on the upper right only corresponds to the trans-
formed deformation vector along the specified line, i.e., § is the deforma-
tion along line 4. With this notation the constitutive boundary equations for
Element 1 which is a cone becomes

(]_Fl\ 1= 1= 1= g l\ rlFfl\

K, %o K3 8
Wl o= 1%, K, Byl |67 ¢ 1pte (3.1)

3 1— 11— 1— 3 £3
\1}? P K K Kyl L0 \lF g

where lFm and lFfm are dimensionalized and transformed to specific coordi-
nate systems. Equation (3.1)does not take advantage of the possible small
coupling between lines 1 and 3. The constitutive relations for all the other
elements have the same form as Eq. (3.1)except for Element 9. This element can
in general have coupling sll around the plate. Because of the symmetrical

loading it is not subjected to fixed edge forces unless it is thermally loaded.

1k
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Fig. 6 Basic Structural Model of Multicellular Structure
with a Specific Ordering of Elements and
Juncture Lines
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Including this possibility, the general form for the constitutive boundary
relation of Element 9 of Fig. 6 is

(5 2) co e e ) [ee2)

r° R, Kyg| |67 '

O . . st .

9F6 - . 66 *

9F8 ¢ . 68 .

9,10 = . . 510 S (3-2)
9p12 . . s 12 .

9Fl)+ . L] 6l)+ .

9_16 9= . . R 16 9_f16

T Koy Kgg| &7 F )

The most important feature in determining possible forms of the overall stiff-
ness K matrix involves the coupling effect of the elements involved in the
structure. The magnitude of the coupling can be determined from the influence
coefficients by noting the effect of the deformations on forces away from the
point at which the deformations are specified. If an element is coupled to at
most three line elements, then the form of the K matrix can be arranged in a
rather compact fashion. However, when there is full coupling very little
sophistication is possible for efficient ordering. In many cases the coupling
will be small; hence, for practical purposes the terms can be neglected. This
simplification should necessarily be verified by simple meaningful checks such

as Jjolning elements together to form a larger structure of the sane geometry.

ince there are eighteen line elements in the model shown in Fig. 6, the

[0}]

eguilibrium equations are
J
}: £Fm
£=1

where i +through Jj are the elements with the same juncture line. For instance,

m=1, 2, 3ce0c.. .18 (3.3)

line 3 is the Jjuncture of Element 1 and 2, hence Eq.(3.3)for this line is

34 % - o (3:4)
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On substituting equations of the form of Egs. (3.1)and (3.2) into Eq. (3.3) yields
the set of simultaneous equation system in terms of the unknown deformation

GR « If the equilibrium equations are written in numerical order, i.e.

m=1, 2 ..... 18 the K will be full. For 18 lines with 20 points each and

4 unknowns at each point yields a total of 1,440 equations in the overall
stiffness matrix X . Equation systems of this size can be solved by direct

or iterative methods but time is generally prohibitive. If K can be arranged
in block diagonal form, then the direct methods discussed in Vol. 1 can be used
to solve the entire problem in a reasonable amount of computer time. In general

X will be full if special coupling and ordering are not used.

By assuming that the coupling of Element 9 is restricted to one line to the
right and one line to the left of the line in question and ordering the unknowns
in an alternate manner, the form of the overall stiffness matrix for the model

shown in Fig. 6 is of a 9 block diagonal form given by

- — 1D " 2
% XX XX 510 F16
' 1
X X|x x X 8 .
x x|x x| x| 1 15
X x{x |x |x 8 .
2
x x| x x| x ) .
—t —1—
kz X |x |x |x —] élh *
L_x X X X X 63 .
X X X X ¥ _] 613 *
L
L_x bid x x| x| 6 s .
X x |x Ix x——l 615 .
L_.x X X X x 65 i
—_—
X |x [x |x x—_] 611 .
6
| x| x| x| x| x 6 .
- T 10
X X X X X [ .
L_x x| x|x x|x 57 .
X X X{xX X X 69 .
L‘xlx x|x x| _ | 68 .
' x bls 617 *
18 =18
L L_‘L_l_ i \5 J \F J

This system can also be considered as a block five diagonal matrix if two lines

are considered at a time.
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3.3 BSuccessive Approximation

Another approach to solve the juncture problem of multicellular structures is
an iterative technique of successive approximation. Instead of solving for
displacements of all the junctures by one large matrix, the Junctures can b«
"relaxed" one at a time to satisfy equilibrium and compatibility at every
point of one juncture line while all other junctures remain fixed. When one
Jjuncture line is relaxed, for example line 5 in Fig. 6, the displacements of
this juncture will in general result in additional boundary forces at all the
boundaries of the shells which ar:s bounded by line 5, i.e. shell segments 2
and 3. After one juncture is relaxed, other junctures can be relaxed in the
same manner'until all the junctures of the structure are relaxed to form one
complete cycle. In the first cycle, the junctures can be relaxed to satisfy
the equilibrium condition by considering the fixed-edge forces only, leaving
the boundary forces due to the juncture displacements to the next cycle. The
additional boundary forces due to the displacements found during a line relaxa-
tion can be computed by the constitutive boundary equations for the shell
elements. These forces are added to the right hand vector for the second cycle.
This, in effect, accounts for the coupling between various elements. If the
coupling is small the iteration should converge rapidly. It is also possible
to consider the accumlated boundary forces due to the displacements of other
Jjunctures similtaneocusly with the fixed-edge forces to accelerate convergency.
This successive approximation technique will never give the exact solution as
after relaxing the last juncture some boundary forces of the other junctures
will violate the equilibrium condition established previously. However, the
inconsistency, i.e. the boundary forces resulting from relaxing the last

Juncture, can be reduced to any desired degree by repeating the cycles.

There are a numbef of advantages to this method. When one Jjuncture is relaxed,
’only two or three shell segments are involved, transformations will be simpler
than for the overall system. Equal spacings can be used between the boundary

points to reduce the complication of dimensionalization. Besides, it has been

shown in Volumes II, III and IV that the accuracy of numerical analysis of

18




shells can be increased by reducing the spacing near the juncture, thus the
spacing between the rows are graded to reduce the total number of mesh points
and ampunt of numerical computations without sacrificing accuracy. If the
Junctures are considered one at a time, only one side of the shell segments
needs to be spaced closely, while nominal spacings can be maintained on the
other sides. In carrying out the successive approximation, the procedure to
relax one juncture is the same as that to relax all the junctures at one time

except for the additional boundary forces due to relaxing of the other junc-
ture lines.

3.4 Numerical Example

Tc demonstrate the direct stiffness matrix method, two orthotropic cylindrical
panels of equal dimensions are joined together end to end to form a panel with

twice the length of each of the original elements as shown in Fig. 6. For

. 1
N A =T T

—fek—

1 (:) R For Elements 1 and 2
'\ ® v = .3 d/b = .0884
. 2 p=R8,/L =1.256  a/h=1k.1
| 0 = . 08 = R
L 5 o 9 t/h = 1.504

@ R/h = 242

i

L)

Fig. 6 Example Geometry for Juncture of Two Cylindrical Panels
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this example one juncture line ab is involved. The complete structure is a
cylindrical panel with fixed-edges subjected to internal pressure. This
example is used to demonstrate the accuracy and feasibility of the technique
since the results can be compared to the results of a complete cylindrical
panel with symmetry.

A digital program has been written which prescribes equilibrium and compati~
bility between shell elements along juncture lines and generates the overall
stiffness matrix X and the right hand vector F, and solves the resulting set

of equations

K& = F

for the deformations 6R along the juncture lines. This program is used in
conjunction with the influence coefficient program described in Vol. V, and
through its own input data has the capability of forming the X matrix by
calling the element stiffness matrices from tape, multiplying them by specified
A, u and ? matrices for dimensionalization and transformation as described
by Eq. (2.9) and adding the new element stiffness matrices to K in a predeter-

mined order.‘ The F vector is fonied in a similar manner.

For the example it is necessary to compute only the influence coefficients of
Element 1 along its upper boundary ab since the coefficients of Element 2
on its lower boundary can be computed by multiplying the coefficients of

Element 1 at a point in the following manner

-1 -1
2. _ 1 ] 1 [ 1 ]
k = [ 1 1 k 1 1

and the fixed-end forces of Element 2 are obtained by

2.f [—1111] 1.f

20



If the boundary coordinates of El:ment 1 are used as a reference, then A

and u for Element 2 are

and the angle of rotation ¢ is zero for both elements. Thﬁs ¢ is a univy
matrix. In the final analysis the influence coefficients and fixed-end forces
of Element 2. can be found from the coefficients and fixed-end forces of

Element 1 by using the following values of A and u

1
}‘z“z[ -ll-l]

in Eq. (2.9). For Element 1 , A, u and & are unity matrices.

Four solutions of the problem were obtained using different spacings. This
includes 5 and 10 columns with 5 equal spaced rows and 13 graded rows where
the grading is fine near the Jjuncture line. The results of this line relaxa-
tion are presented in Fig. 7 for the displacement components w and v . It
is noted that the rotation and displacement component u are zero due to
symmetry. The juncture matching is compared to results of a long cylindrical
penel (p = .628) with 5 and 10 columns and 6 and 1k equally spaced rows. It
is seen that the matching results are in good agreement with the results of
the complete panel. The detailed distribution in the 6 direction is revealed
by using more columns. Thus it is essential to determine the accuracy required
by using sufficiently close spacing. However, it is also seen that fair

accuracy can be obtained by using a small number of rows and columms.

21



aTdwsXy J0J aUT] aangounf Fuorz sjusuocdwo) jquewss=Tdsyd TBUOTSUSWIPUON [ *FTJ

9

I

A - jqusuoduo) quswadeTdST§ TEUOTSUSWTPUOY

DNTHOLW BMALDINT

O.H @. m. iu N' O
mA_ L | | | \ | | | L o
7T or ar 2
o - B
> CH D T!l N. m
9 g @) o
nog “T0D - m
IMLGIAS HITM TENVS TVOTHALITID B
— 7 H
)
€T ot < e
g or O r 2
€T g \v4 m
4 a o 7% 3
o
— c
MOy "T0D - a
(o]
5
(o)
jn
o)
B
ct
]

2T

2z



